Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited.

نویسندگان

  • Melissa Vellela
  • Hong Qian
چکیده

Schlögl's model is the canonical example of a chemical reaction system that exhibits bistability. Because the biological examples of bistability and switching behaviour are increasingly numerous, this paper presents an integrated deterministic, stochastic and thermodynamic analysis of the model. After a brief review of the deterministic and stochastic modelling frameworks, the concepts of chemical and mathematical detailed balances are discussed and non-equilibrium conditions are shown to be necessary for bistability. Thermodynamic quantities such as the flux, chemical potential and entropy production rate are defined and compared across the two models. In the bistable region, the stochastic model exhibits an exchange of the global stability between the two stable states under changes in the pump parameters and volume size. The stochastic entropy production rate shows a sharp transition that mirrors this exchange. A new hybrid model that includes continuous diffusion and discrete jumps is suggested to deal with the multiscale dynamics of the bistable system. Accurate approximations of the exponentially small eigenvalue associated with the time scale of this switching and the full time-dependent solution are calculated using Matlab. A breakdown of previously known asymptotic approximations on small volume scales is observed through comparison with these and Monte Carlo results. Finally, in the appendix section is an illustration of how the diffusion approximation of the chemical master equation can fail to represent correctly the mesoscopically interesting steady-state behaviour of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches

The Cellular Automata method has been used to simulate the pattern formation of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic Cellular Automata approaches have been considered and two different methods for obtaining the probabilities in the microscopic approach have been mentioned. The results show the tendency of the system towards the more sta...

متن کامل

Parallel replica dynamics method for bistable stochastic reaction networks: Simulation and sensitivity analysis.

Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable region...

متن کامل

Bistability: Requirements on Cell-Volume, Protein Diffusion, and Thermodynamics

Bistability is considered wide-spread among bacteria and eukaryotic cells, useful, e.g., for enzyme induction, bet hedging, and epigenetic switching. However, this phenomenon has mostly been described with deterministic dynamic or well-mixed stochastic models. Here, we map known biological bistable systems onto the well-characterized biochemical Schlögl model, using analytical calculations and ...

متن کامل

Dynamics of Housing Prices and Economic Fluctuations in Iran with the Approach of Dynamic Stochastic General Equilibrium (DSGE)

This paper studies the relationship between housing prices and business cycles in Iran. Since housing has a dual nature, that is, both private and capital nature, it can play an important role in investment costs and economic growth and incite other manufacturing sectors in the country. In this paper, housing prices and business cycles have been used to measure housing as a collateral, which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 6 39  شماره 

صفحات  -

تاریخ انتشار 2009